

DfR Solutions -Your Partner Throughout the Product Life Cycle

Vidyu Challa and Greg Caswell

12 Years of Providing Solutions to the Electronics Marketplace

End-to-End Quality and Reliability Expertise

- DfR / DfM / DfX
- o 3rd Party Design Review
- Failure Analysis
- Root Cause Investigations
- Forensic Engineering
- Circuit Analysis
- Connector/Wiring Selection
- Analog/Power Design
- Material Characterization
- PCB / PCBA Onsite Audits
- Pottings and Coatings
- FMEA / FTA
- Finite Element / Fluid Dynamics
- Physics of Failure Modeling

ENGAGED WITH ALL LEVELS OF SUPPLY CHAIN

Lab and Test Capability

Over 25 environmental chambers

- Temp Cycling, Temp/Humidity
 - Walk In
 - -200C to 1500C

Vibration + Temperature

Mech Shock / Drop

Bend Testing (Cyclic & Overstress)

Component Testing

- Capacitors (Electrolytic, Ceramic, Tantalum)
- Optocouplers
- Fan
- Power Supplies
- CPU
- Memory
- Drives (Disk and Solid State)

Material and Failure Analysis

- Microscopy (Stereo, Optical, Electron)
- NDE (X-ray, Acoustic, Infrared)
- Surface Analysis (XRF, EDS, FTIR)
- Ion Chromatography
- Mechanical Testing (Tension, Compression, Shear, etc.)
- Cross-Sectioning
- Delidding
- **Decapsulation**
- SQUID Microscopy

EXAMPLE ACTIVITIES

Simulation and Modeling

DfR is capable of performing thermal, mechanical, and electrical simulations and extracting the results into a time-to-failure prediction

We have developed specific algorithms and software tools relevant to electronic packaging and interconnects, power devices, and digital integrated circuits

EXAMPLE ACTIVITIES (CONT.)

Root Cause Analysis and Corrective/Preventative Action

- o DfR goes beyond 'picture and an arrow'
- Capable of investigating all electronic failures and providing recommendations on appropriate mitigations
- Based on experience and deep understanding of physics of failure

RESULTS: OVER 1000 SATISFIED CUSTOMERS

Schlumberger

QUALIFICATION FOR COMMERCIAL SPACE SYSTEMS

Part Qualification and Small Missions

- Is there a need to continue to use 'Class S qualified' parts for Small Missions (i.e., CubeSats)?
- The primary driver for part qualification, outside of manned space systems, is reliability and cost
- Given the expected technology in Small Missions (COTS parts and boards) and size/weight, what reliability is sufficient and what expenditure can be justified based on cost?

What is Launch Reliability?

- Studies have demonstrated that launch reliability has stayed relatively constant over the past twenty (20) years
 - Between 2 to 5% failure rate per launch

How much
 more reliable
 do Small
 Missions need
 to be?

What is COTS Reliability?

- Small Missions are expected to be comprised of COTS technology to keep costs reasonable
- A decision on if and how to qualify these technologies can be partially based on their field performance
- While true field performance of COTS parts is difficult to obtain (don't always believe the parts suppliers), there is publically available data on assemblies fabricated from COTS parts

COTS Reliability: Automotive Modules

 The performance of automotive electronic modules in propulsion and safety is typically less than one (1) incident per thousand (IPTV) in the first 1-3 years

Examples

Hyundai Brake Module:

GM Antilock Brake Module:

Nissan Transmission Controller:

0.3 IPTV (99.97%)

0.03 IPTV (99.997%)

0.6 IPTV

What are Alternative Methods to Qualify EEE Parts?

CLASS S PARTS REQUIREMENTS vs COMMERCIAL AUTOMOTIVE

- Extended temperature range: -55°C
 to 125°C or wider
- Hermetic packaging (i.e. solid state relays and monolithic ICs)
- Higher vibration capability
- Control of outgassing and flammability
- Low defect levels (10ppm) and high reliability (1 to 15 FITs)
- Conservative derating and application practices
- Radiation hardening
- It should be noted that some of the demanded defect levels of space grade parts are higher than the defect levels expected and delivered in some commercial applications

ICCUE	CLASS S	CLASS P	IMPACT
ISSUE	CLASS S	CLASS B	IMPACT
Wafer lot acceptance	Required		Uniformity and pedigree traceability
Certification of production facilities	To specific assembly lines	To technologies and general facilities only	Burn-in and screening value relates to consistency of original product
Precap internal inspection	100%	Sampled	Significant driver on level of reliability - criteria much more stringent in MIL-M-38510H
PIND for loose particle detection	Required		Loose metallics in zero g field can cause failures
Serialization	Required		Traceability lost
Interim electrical test between test phases	Required		Potential of passing over problems and their causes
Burn-in	240 hours	160 hours	Later problem discovery
Reverse bias burn-in	Required		Impurity migration not detected
Interim electrical test after reverse bias burn-in	Required		Effects of reverse bias burn-in may be masked by subsequent actions
Radiographic inspection	Required		Observation of latent defects
Nondestructive 100% bond pull test	100%	Sampled	Parts with mechanical deficiencies get into equipment

				Xilinx	Xilinx	Linear Technology	Linear Technology	On- Semi	International Rectifier	International Rectifier
Step	Baseline Screen	883 Method	Requir ement	V-flow Space qualified ceramic per Mil PRF 38510	Automotive - plastic per AEC specs	Space Grade	Automotive Grade 1	Automotive Grade	Automotive Grade	Space Grade
1	Destructive In- Line Bond Pull	Method 2011, Condition D	sampl <u>e</u>	in-line SPC, a significant advantage over lot sampling	SPC sample once per shift per bonder	100% non- destructive bond pull per MIL-STD 883 Method 2023	MIL-STD-883 Method 2011- 30 bonds per shift	not performed		Process Monitor MIL-STD-883, Method 2023
2	Internal Visual	Method 2010, Condition A	100%	Method 2010, condition B	Commercial visual	100% pre seal visual per MIL- STD-883 Method 2010, Condition A (Note1)	not performed	not performed		100% MIL- STD-883, Method 2010 Condition A
3	Serialization		100%	100%	not done	100%	not done	not performed		100%
4	Temperature Cycling	Method 1010, Condition C	100%	Method 1010, Condition C	lot sample, condition C	100% MIL-STD- 883, Method 1010, Condition C	per JESD22 A 104-sample 77 plus power temp cycle per A-105 - 77 sampples	77 units/lot 500 cycles -55 to 150C	77 units/lot 1000 cycles - 55 to 150C	100% MIL- STD-883, Method 1010 Test Condition C
5	Constant Acceleration	Method 2001, Condition B or D, Y1 Orientation Only	100%	Method 2001, Condition B or D, Y1 Orientation Only	not applicable	100% MIL-STD- 883, Method 2001, (y1 Only) Condition E (TO3 package, Condition D)	not done	hermetic packages only		100% MIL- STD-883, Method 2001, Test Condition E
6	Particle Impact Noise Detection	Method 2020, Condition A	100%	Method 2020, Condition A	not applicable	100% PIND Test per MIL-STD-883, Method 2020, Condition A	not done	not performed		100% MIL- STD-883, Method 2020 Test Condition A
7	Radiographic	Method 2012 (one view only)	100%	lot sample in- line and at DPA	not done	100% per MIL- STD 883, Method 2012, 2 views	not done	not performed		100% per MIL- STD 883, Method 2012

18

8	3 Pre-Burn-In Test	In accordance with applicable Vendor "A" device specification	100	In accordance with SMD	not done	100%	J-STD-020 sample size 77	not performed		100%
ç	P Dynamic Burn-In	Method 1015, Condition D, 240 hours at 125°C or 120 hours at 150°C minimum	100	1015, Condition D, 240 hours at 125°C or 120 hours at 150°C minimum		100% per MIL- STD-883, Method 1015 240 hours at 125C	Temperature Operating Life -		HTOL, 3 lots, 77 samples, 125C 1000 hours or 500 hours at 150C	100%, 240 hours, MIL-STD- 883, Method 1015
10	Interim (Post-Burn-In) Electrical Parameters		100	In accordance with SMD	not applicabl e	100% test at 25C, 125C and -55C	not done	not performed		100%
11	l Static Burn-In	Method 1015, Condition C, 72 hours at 150°C or 144 hours at 125°C minimum	%	Method 1015, Condition C, 72 hours at 150°C or 144 hours at 125°C minimum	after qualificati on per	Condition A or C, 72 hours min		not performed		
12	Interim (Post-Burn-In) Flectrical Parameters	In accordance with applicable device specification	100	In accordance with SMD	see AEC specs	100% In accordance with applicable device specification	not done	not performed		
13	Percent Defective 3 Allowable (PDA) calculation	5%, 3% Functional Parameters at 25°C		All lots	see AEC specs	5%, 3% Functional Parameters at 25°C	not done	not performed		5%
14	4Final Electrical Test	In accordance with applicable device specification which includes a, b and c	100	100%	100%	100%	100%	100%		100%
										/

15 Seal	Method 1014	100%	100%	not applicable		not applicable		
a. Fine				not applicable	100% per MIL-STD - 883, Method 1014, Test condition A	not applicable	hermetic packages only	100% per MIL- STD -883, Method 1014, Test condition A
b. Gross				not applicable	100% per MIL-STD - 883, Method 1014, Test condition C	not applicable	hermetic packages only	100% per MIL- STD -883, Method 1014, Test condition C
16 External Visual	Method 2009	100%	Method 2009	comercial spec	100% per MIL-STD- 883 Method 2009	package dimensions (SS2), external visual(SS45), marking permanency(SS 3), solderability(SS 3), die attach quality9SS11), lead fatigue(SS10)	Analysis	100% per MIL- STD-883 Method 2009

Linear Technology Automotive Grade 1	On-Semi Automotive Grade	International Rectifier Automotive Grade
Temp/Humidity Bias SS45 JESD22 A101	77 samples 168 hours 85C 60% RH	3 lots of 77 samples 1000 hours 85C 85RH
Unbised HAST - JESD22 A102, SS77		Or 96 hours 130C-85%RH,18.6psi
High Temp Storage Life JESD A103 SS77	77 units 1008 hours 150C	1 lot - 45 samples, 150C 1000 hours
Early Life Failure Rate AEC-Q100-008	800 units/lot 48 hours 150C	3 lots x 800 samples - biased up to 100%, 125C 48 hours
NVM Endurance AEC-Q100-005 SS77	77 units/lot 1008 hours 150C	
Solderability JESD22 B102 SS15		
Physical Dimensions JESD22 B 100 SS10		
Lead Integrity JESD22 B105 or Solder Ball Shear AEC-Q100 SS5x10		
		power temperature cycle -40C to 125C 1000 cycles 1 lot 77 samples
		Unbiased autoclave 121C, 15psi, 100%RH, 3 lots 77 samples
Die Tests	Die Tests 3 lots mandatory	
TDDB	TDDB	
Hot Carrier Injection	Hot Carrier Injection	
Negative Bias Temp Instability	Negative Bias Temp Instability	
	Capacitor Dielectric	
	Plasma Process Induced Stress	
	Metal/Dielectric Integrity	
	Bias Temp Stress	
Stress Migration	Stress Migration-1 lot	
Electrical Verification		
ESD Human Body - AEC Q100-002 and 003	5 units/lot	
	ESD Machine model 5 units/lot	
ESD Charged Device - AEC Q100-011	5 units/lot	
Latch Up-AEC-Q100 004	5 units/lot	
Electrical Distributions AEC-Q100 009		
Fault Grading - AEC-Q100 007		
Characterization AEC-Q003		

Gate leakage - AEC-Q100 006		
EMC Compatibility SAEJ1752/3		
Short Circuit Characterization AEC-Q100 012		
Soft Error Rate JESD89-1/2/3		
Process Avg Testing AEC-Q001		
Statistical Bin Analysis AEC-Q002		
	Mechanical Shock - hermetic packages only	
	Vibration - hermetic packages only	

What is Automotive Grade?

- Automotive grade should mean
 - Tested to one of the AEC qualification documents (Q100, Q101, Q200)
 - Includes rigorous process change notification
 - Certified to ISO/TS-16949
 - Requires a Production Part Approval Process
 (PPAP)[typically compliant to AIAG manual]; PPAP would include PFMEA, control plan, drawing, MSA, capability data, etc
 - Commitment to Zero-Defect
- In actuality, automotive grade means different things to different component suppliers (there is no standard)

CONCLUSIONS FROM DFR SURVEY OF ASSEMBLY COMPANIES

- We found that assembly companies supplying to the automotive industry already go beyond class S requirements for the most part
- Automotive conditions are more stringent than space in terms of temperature (except during launch), vibration and shock
- Exceptions are radiation hardening
- Space grade components can cost 100X to 1000X more than functionally equivalent commercial or automotive grade components

Part	Grade	Package	Unit Cost (\$)
0.1 uF/50 V Ceramic Chip	General Commercial	0603	0.035
Capacitor	Automotive	0603	0.14
	Military	1812	0.68
	Space	1808	~20.00
2N2222A Transistor	General Commercial	TO-18	0.77
	Automotive	??	0.33
	Military	TO-18	5.02
	Space	UA	38.00

Concerns with Radiation

- Reliability by similarity (RBS)
 - Future efforts can focus on part technology, especially power and analog, instead specific components
- With evidence that newer digital semiconductor devices are more tolerant to Total Dose (TID), focus on fault tolerant system for single event effects (SEE)
 - Software, shielding, supporting external circuits, etc.

Concerns about Quality

- The quality levels of certain COTS parts and assemblies may already be sufficient
- It has been DfR Solutions experience with passive and discrete devices that the quality levels of top tier suppliers is higher than from lower tier suppliers that offer screening levels
- <u>Case Study</u>: Project with medical device
 OEM found commercial-grade ceramic
 capacitors had higher incoming quality
 than similar devices subjected to medical
 or military grade screening

Concerns about Reliability

- Most Small Missions are likely to have brief lifetimes
 - 1 month to 1 year
 - A focus on long-term reliability, even under the extremes of space environment, may not be relevant
- Recent focus on high performance mobile applications can help extend lifetimes
 - Lower voltage, lower power reduces stress on active regions within the digital device
- When Small Missions have longer lifetimes, simulation may need to accentuate or replace actual testing
 - Both at part and assembly level

Integrated Circuit Reliability: Multi-Mechanism

Approach

- Models <u>simultaneous</u>
 degradation behaviors of
 <u>multiple failure mechanisms</u> on
 integrated circuit devices
- Devised from published research literature, technological publications, and accepted degradation models from:
 - NASA\JPL
 - Semiconductor Reliability Community

Assembly-Level Reliability — Virtual Power Cycling

Conclusion

- Small Missions offer a great opportunity for the Space Community
- Success is dependent robust EEE systems within a particular cost and time envelope
- There are opportunities and techniques that allow for robust EEE systems when leveraging existing knowledge and good engineering judgment
 - What is the environment?
 - What is the necessary reliability?
 - o What is the budget?

